The presented invention introduces a method for increasing power transferred by an integrated inductor as well as the integrated inductor itself, that is used in resonant-mode electrical energy converters, enabling minimization of dimensions and weight of the ferromagnetic cores used in inductive elements as well as shifting the operating frequency to the range from 500 kHz to several MHz.

In short, the presented method uses a phenomenon of superposition of magnetic induction vectors in both time and space domain. For this purpose the windings of an integrated inductor are oriented with respect to each other in such way, that two magnetic fluxes can pass through the same magnetic circuit independently. The magnetic induction vectors are oriented orthogonally in space and, moreover, their time varying amplitudes are also mutually phase-shifted.

In a topology based on a series-parallel LCLC resonant circuit there is a possibility to use a dedicated integrated reactance element, that would incorporate all the heavy current inductive elements. The selected topology ensures reliable operation of the power converter under any load, from short circuit through nominal load to an open circuit, while keeping the current flow through the resonant circuit uninterrupted. From the perspective of requirements, costs, dimensions and weight the two most critical components are the resonant inductor L_r and transformer L_{prim}/L_{sec} (fig. 1 and 2).

Thanks to the soft zero voltage switching technique used, an ability to control the du/dt voltage change rate was gained, both in resonant circuit as well as in the commutation circuit. This also results in low level of conducted and radiated interference emissions, which translates into reduced costs of filtering components. Moreover, the circuit gives the possibility to have continuous and quasi-sinusoidal current flowing through the resonant circuit, independent of the connected load. An additional benefit is the possibility to regulate the output power in wide range of loads with a relatively small change of switching frequency – that is below 10-15%.

Mutually perpendicular spatial arrangement of transformer L_{prim}/L_{sec} winding against the winding of inductor L_r results in magnetic induction vectors in ferromagnetic core, originating in currents of those windings, being mutually perpendicular. In addition, when the phase shift of both vectors of magnetic inductions is nearly 90\degree increase in output transferred per unit of magnetic material volume occurs. Due to nearly sinusoidal waves of currents in resonant circuit, losses due to working frequency also reach the minimum value.

In professional literature, losses in ferromagnetic core are usually described with the formula:

$$P_v = P_{hysteresis} + P_{eddy\ current} + P_{residual}$$
According to manufacturer data, losses in ferromagnetic core
\(P_c(B,f,T) \) depend mostly on the value of magnetic induction \(B \),
magnetic field frequency \(f \) and core temperature \(T \), and:
\(P_c(B)=B^2+r \) where \(y=0,1 \); \(P_c(f)=f^{1+\epsilon} \) where \(x(0,1); P_c(T) \) has
the minimum near 90°C.
Thus the highest contribution to losses shall have the value
of magnetic induction (dependence stronger than square),
field frequency (dependence stronger than linear), and
as regards temperature the minimum is in the near 90°C (popular
magnetic materials N97, 3F3, 3F4, etc.). Assuming, using
simplification, operation of two induction vectors shifted in
phase by 90° and in mutually perpendicular planes, and
assuming the same induction amplitude related to inductors
\(L_r \) and \(L_p \): \(B_{x0_r}=B_{x0_p}=B_x \) for sinusoidal and cosinusoidal
waves we obtain the module of resultant induction \(B_{Axy}(t) \)
taking the value described with the formula:
\[
|B_{Axy}(t)| = \sqrt{B_x^2 \cdot \sin^2 \omega t + B_y^2 \cdot \cos^2 \omega t} = B_x \cdot \sqrt{\sin^2 \omega t + \cos^2 \omega t} = B_x
\]
This is an extremely advantageous situation, as magnetic
induction amplitude did not increase. Losses are obviously
higher than in the case of sinusoidal wave, due to the fact
that magnetic induction amplitude equals \(BA \) irrespective
of time, however this helps to achieve the maximum use of
ferromagnetic core.

![Fig. 4. Preparation of integrated induction element (Step 1)](image)

Fig. 5. Preparation of integrated induction element (Step 2)

Fig. 6. Preparation of integrated induction element (Step 3)

**Fig. 7. Resonant power supply dedicated for LED application
based on the invention (300W@1MHz)**

Technology offer
The method for increasing power transferred by an
integrated inductor and a resonant-mode power supply
with an integrated inductor are subject to patent protection.

AGH University of Science and Technology in Krakow offers:

- a non-exclusive license for use of the technology
- in selected fields of application
- adaptation of the technology to customer's needs

All interested parties may contact:

Cezary Worek
Department of Electronics, AGH UST, Kraków
email: worek@agh.edu.pl

+48 12 6173637 +48 601 912 938

Patent pending:
PL: P393133
PCT: PCT/EP2011/071499
EPO: 11794447.0
USA: 23990432
Canada: 2818855
China: CN2011857933

Patent protection of the presented invention is subfinanced
by "Patent PLUS - support of patent protection" program
contract no 13/PMP/W/15-03.11/2012